Intravalley multiple scattering of quasiparticles in graphene
نویسندگان
چکیده
منابع مشابه
Multiple scattering of fractionally charged quasiparticles.
We employ shot noise measurements to characterize the effective charge of quasiparticles, at filling factor nu=1/3 of the fractional quantum Hall regime, as they scatter from an array of identical weak backscatterers. Upon scattering, quasiparticles are known to bunch, e.g., only three e/3 charges, or "electrons" are found to traverse a rather opaque potential barrier. We find here that the eff...
متن کاملFingerprints of Multiple Electron Scatterings in Single-Layer Graphene.
The electrons in graphene exhibit unusual behaviours, which can be described by massless Dirac quasiparticles. Understanding electron scattering in graphene has been of significant importance for its future application in electronic devices because electron scattering determines electrical properties such as resistivity and electron transport. There are two types of electron scatterings in grap...
متن کاملBose-Einstein condensation of quasiparticles in graphene.
The collective properties of different quasiparticles in various graphene-based structures in a high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and the superfluidity of 2D spatially indirect magnetoexcitons in a two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the...
متن کاملScattering of bunched fractionally charged quasiparticles.
We report the unexpected bunching of Laughlin's quasiparticles, induced by an extremely weak backscattering potential at exceptionally low electron temperatures (T<10 mK), deduced from shot noise measurements. Backscattered charges q=nue, specifically, q=e/3, q=2e/5, and q<3e/7, in the respective filling factors, were measured. For the same settings but at a slightly higher electron temperature...
متن کاملFeatures of the Generalized Dynamics of Quasiparticles in Graphene
The general dynamic properties of the electron, as quasiparticle in conduction band of graphene, were analyzed. It is shown that in graphene, these properties essentially differ from similar base properties for crystals with a simple lattice, despite insignificant, on the first sight, difference of dispersion law ε(p). Primarily, crystals with an elementary cell of arbitrary complexity of struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.83.165437